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Abstract— The problem of ill-posedness of the boundary value problem in non-associative plasticity
is addressed. Well-posedness is achieved through the introduction of a potential ¢ that plays the
dual role of a hardening function and a diffusion potential. Simultaneous constitutive equations in
the form of partial differential equations for the velocity field %, and ¢ are established. The problem
of simple shearing is solved as an example and patterned deformation is shown to occur in the
presence of softening. The work is confined to small deformation. {C 1998 Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

Non-associative theories of plasticity arise when the plastic potential surface (to which the
plastic strain rate is normal), does not coincide with the yield surface. Such is the situation
when the position and configuration of the yield surface in stress space, depend on the
prevailing hydrostatic stress. Correct prediction of the volumetric plastic strain rate then
calls for non-associative theories.

However, when non-associativity prevails, the boundary value as well as the wave
propagation problem are not unconditionally well-posed, even in the absence of softening,
as is the case in associative theories. See Valanis and Peters (1996), where it is demonstrated
that well-posedness fails in the case of a plastically incompressibie solid with a pressure-
dependent yield surface. In a much earlier paper Rudnicki and Rice (1975) showed that the
determinant of the acoustic tensor D(Q,) vanishes in the case of soil model with a pressure
dependent yield surface, thus demonstrating the existence of shear bands. The condition
D(Q,) =0, is tantamount to loss of hyperbolicity and therefore, ill-posedness. The diffi-
culties cannot be addressed in the context of a local theory.

In cases where ill-posedness is due to softening, “‘regularization procedures’ involving
higher gradients of appropriate constitutive variables have been proposed in recent years,
but it is not always clear how these reflect the underlying physics of the problem. Also the
associated boundary conditions are often physically opaque and/or difficult to replicate
experimentally.

A leading approach in Mises plasticity, used by Aifantis (1992a), in the presence of
plastic incompressibility, is to introduce in the hardening function of the yield law, a
dependence on the Laplacian of the intrinsic time z, as in eqn (1.1):

A9 = k(z.V2) (I.)

where g is the deviatoric stress tensor, f(*) is the yield function and k(*) the hardening
function, which in standard plasticity depends on z alone.

In this event the Prager consistency condition, i.e., the rate form of eqn (1.1), in the
material domain D, becomes:

[5=k2+kyViz (1.2)

where [ = 0f/0s, k. = 0k/0z and ky = 0k{0V*z. Equaticn (1.2) is a linear second order partial
differential equation in 2z with a “forcing function” on the left hand side. If a solution of
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this equation is to exist and be unique, either  or §z/0n must be known on the boundary S
of D, where 02/0n, i.e., Vz " n, is the projection of the gradient of z onto the unit normal to
the surface. In this regard see Muhlhaus and Aifantis (1991).

Difficulties arise because neither z or §2/8n is known on the boundary, nor is the manner
in which experimental conditions affect these quantities on the boundary, understood. Thus
unless means can be found for resolving these questions, these issues will remain.

Despite these difficulties, a great deal of pioneering work has been done in this area by
Aifantis (1992b), who must be credited for pointing research efforts in the right direction
to understand the formation of bands, and to resolve the question of ill-posedness in the
presence of softening. For other contributions in this area see Vardoulakis and Aifantis
(1991) and Vardoulakis and Frantziskonis (1992). More recently, Valanis (1996) developed
a gradient theory of internal variables and showed, Valanis (1998), that it leads to banding
and patterned deformation in solids.

In this paper we begin with the observation that internal motion in materials is not
affine and is in fact diffusive. Dislocation motion makes the case in metals. For granular
media it was demonstrated experimentally by Bridgewater et al. (1985). Our point of
departure then, is that a component of the volumetric deformation is attributable to changes
in a diffusion potential akin to the configurational temperature of the material, as discussed
previously by Valanis (1993).

The resulting non-local constitutive framework preserves the physics of the local
theory, which does well in homogeneous deformation, and involves boundary conditions
that are physically motivated and experimentally realizable. More importantly, it leads to
boundary value problems that are well-posed.

We shall limit the analysis to materials that are plastically incompressible. This is very
closely true of metals at room temperature and approximately true in soils in situations
where the shear strain far exceeds its volumetric counterpart. In metals one encounters the
strange phenomenon where the yield surface is susceptible to changes in pressure and yet
the plastic volumetric strain remains virtually negligible. See Richmond and Spitzig (1980).

The resuiting theory of such behavior must be non-associative since normality of the
plastic strain rate to the yield surface would lead to excessive plastic volumetric strain. It
was shown however, Valanis and Peters (1996), that such a theory leads to ill-posed initial
and boundary value problems.

Summary of the paper

In Section 1 we give a brief review of regularization to the problem of softening.

In Section 2 we present a short discussion (also done elsewhere by other authors) of a
plastically incompressible Mises solid with a pressure dependent yield surface. This solid is
non-associative, leading to violation of Drucker’s stability postulate and lack of uncon-
ditional well-posedness of the boundary value problem. The discussion is limited to isotropic
hardening. An analysis in the presence of isotropic as well as kinematic hardening is given
in Section 9.

In Section 3 we introduce a void flux ¢ and a potential ¢, the mathematical purpose
of which is to eliminate ill-posedness in the presence of non-associativity. The potential ¢
plays a dual physical role. The first is a hardening role (as in Hertzian friction) very much
like the pressure in the local theory, and the second is the role of a diffusion potential, such
that g is linearly related to the gradient of the rate of ¢, i.e., V.

A constraint, crucial to the role of ¢, is that the rate of the void volume generated in
situ by ¢, plus that generated by diffusion, must sum to zero, to preserve plastic incom-
pressibility. The law of evolution for ¢ is given by eqn (3.11).

In Section 4 we give the complete constitutive formulation which relates (i) the stress
rate g to the strain rate ¢ and ¢ and (i) the partial differential equation that relates ¢ to &.
These relations are given by eqns (4.9) and (4.10), respectively.

In Section 5 the resulting well-posedness of boundary value problem is then discussed
with appropriate physically realizable boundary conditions motivated by the physics on
the boundary.
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In Section 6 the workings of the theory are illustrated by solving the problem of a
material layer of finite thickness but infinite extent, subjected to simple shear on the upper
boundary but bonded to an impermeable foundation. When hardening prevails the problem
is solved in closed form and the solution is seen to be unique and stable. The non-local
character of the solution is discussed and its differences from the local solution are pointed
out.

In Section 7 we deal with the question of a softening material by finding a solution,
again in closed form, in the presence of softening. This solution is important in three
respects:

(i) It exists and is unique.
(ii) It is stable except at discrete, singular points of instability.
(iii) It is periodic, giving rise to patterned deformation fields, as observed.

Thus, the potential ¢ rectifies ill-posedness due to non-associativity as well as material
softening.

In Section 8 we show that the variational solution to the boundary value problem
exists and is unique, in the light of an inequality that governs the material constants
pertaining to the diffusion processes in the solid.

In Section 9 we give the full constitutive formulation in the presence of both isotropic
and kinematic hardening.

2. LOCAL THEORY—PLASTIC INCOMPRESSIBILITY IN THE PRESENCE OF A
PRESSURE-DEPENDENT YIELD SURFACE

Solid with isotropic hardening
To fix ideas we begin with the simple case of a plastically incompressible solid with
isotropic hardening and pressure-dependent yield surface as depicted in eqn (2.1):

Ssy) = k(p,2) 2.1

where g is the deviatoric part of the stress tensor g, p = —a,/3 and z is the intrinsic time
scale. We remark that k satisfies the conditions: k. > 0, &k, > 0, where k, = ¢k/0z and
k, = 0k/dp. Quite clearly, one cannot admit an associative theory in the light of eqn (2.1),
since then a plastic volumetric strain would exist, whose rate would be equal to — 2z dk/dp.
Thus, a non-associative theory must be adopted where f acts as a plastic potential and the
plastic deviatoric strain rate ¢ is given by eqn (2.2a,b) .

¢=z2£2>0, ¢=0, z<0 (2.2a,b)
where /= 0f/ds, and &, = 0. It then follows that .
& =3/2u; &y = éy = 6u/3K (2.3a,b)
where 4 and K are the shear and bulk elastic moduli, respectively. Also,
g=¢+e (2.4)
The Prager consistency condition, i.e., eqn (2.1) in rate form is given by eqn (2.5)
Sy = kpt+k.z (2.5)

or:
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k.2 =[5, —k,p (2.6)

We also note the relation :
Sy = iy 2.7

which follows from eqn (2.2a).

Remark. Note that f, is normal to the yield surface. Thus, if p = 0, then [|¢”]| # 0. i.e.,
2 > 0if the angle o between fand § is acute. However, when p < 0 it is possible for ||¢°| # 0
even when the angle o > /2 (fi$,; < 0), provided that k,|p| > [f;5,]. In view of eqn (2.7),

the inequality f;;s; < 0 means that:

s, <0 (2.8)

When eqn (2.8) applies, the stability condition (é7s; > 0) as proposed by Drucker (1959)
is violated and the boundary value problem is no longer well posed, since given a domain
D with surface S and traction rates T on S, the problem may either have no solution or
admit a multiplicity of solutions for the strain field in D. See Valanis and Peters (1996).

3. THE DIFFUSION POTENTIAL

Deformation processes are usually accompanied by diffusion of dislocations in the
case of crystals, particle (or void) diffusion, or coordinated dislocation diffusion such as
intra- and/or inter-granular slip in the case of metals and migration of granules (or voids)
in the case of granular soils. See Bridgewater er al. (1985). Close observation of the motion
of granular media, reveals that the applied loads (stresses) are carried by a solid *‘skeleton”
formed by granules within the material domain, and to a lesser extent by looser grains that
engage in migratory motion. The skeleton does not consist of the same grains, but undergoes
a reformation process during the deformation history.

Thus, a material domain consists of a solid and a migratory phase, and particles or
grains enter and leave a phase in the course of deformation. There is no evidence of
conservation of number of particles or grains, in either phase, during a stress history. This
last mode of deformation is not encountered in local theories of plasticity, such as the one
presented in Section 2.

Moreover, because diffusive motion calls for a potential gradient leading to a gradient
theory, we need to reinterpret experimental observation. We note that experiments, at the
phenomenological level, are carried out on finite regions and within these there exists
migratory motion resulting in inhomogeneous stress and strain fields in cases where local
theories would predict otherwise.

Thus, while we say that a domain is subjected to a hydrostatic stress, we mean that a
finite region at its boundary, is subjected to traction that are normal to the boundary. Also
when it is said that the strength of a neighborhood increases with increasing pressure, what
is meant is that normal compressive traction increase the overall shear strength of the
domain. Since, in general, the stress distribution within the domain is not known, unless a
local theory is assumed, we cannot say a great deal about the interior hydrostatic stress or
other “‘strength-increasing” interior stresses.

In the light of these remarks we introduce a new constitutive variable ¢ and we
reinterpret eqn (2.1) to mean that :

fs) = k(¢,2) (3.1

¢ being such that on the permeable part of the boundary where tractions 7, are applied :
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b= —Tn, (3.2)

where n; is the unit normal to the surface. The sign convention in eqn (3.2) means that ¢
on the surface is positive when the normal boundary traction are compressive.

Let uniform tractions be applied to the permeable faces of a cubical domain. In local
theory parlance, the normal traction on face one, normal to x,, is o,, that on face two,
normal to x, is ¢, and that on face three, is ¢5;. Thus, in the light of eqns (3.1) and (3.2),
the shear strength (and stress) in a neighborhood adjacent to face ““one’” will be influenced
by a,;, that of a face “two” by a,, and so on. This situation is much more depictive of a
theory of Hertzian friction than a theory where the shear strength of the cube is dependent
on the hydrostatic stress (1/3)oy,.

The role of the potential ¢ is two-fold: (i) ¢ itself causes void generation in situ by
local structural material changes leading to void accretion or annihilation, while (ii) the
gradient of ¢ causes void diffusion to (or from) neighboring material elements. We thus let
w,, be the total void density generated by ¢ and let w; be the part generated in situ while w;
is the part generated by diffusion. Thus:

0, = 0,4 05 (33)

If the material is plastically incompressible all volume changes are elastic and thus by
definition &, = 0. Thus:

In regard to w, it is possible to envision this to consist of two parts, a reversible part
w; —which would have the physical meaning of recoverable volumetric changes, difficult

of envision in inert granular media, but possible in metals and polymers— and an irreversible
part w,,. The equations of evolution of w;, and w;, are:

@, = Bo (3.5)
w;, = —20k/0¢ (3.6)

where Bis a positive scalar. Equation (3.5) is self-explanatory and the negative sign accounts
for the fact that ¢ is positive in compression while w;, is positive in dilation. Equation (3.6)
is form-invariant with respect to its counterpart in local plasticity, where k is a function of
p and z in which event: &, = — 2 ¢k/0dp. Thus:

w; = —Bp—20k/0g (3.7)

In regard to w;, since this is generated by diffusion there must exist a “void flux” g,
such that:

W = —q;; (3.8)

Equation (3.4), the condition of elastic volumetric response, then leads to the following
equation:

Bd+:k, = —q,, (3.9)

If the material is rate-indifferent a gradient in ¢ will not, in itself, cause a void diffusion.
What is needed is the gradient of the time rate of change of ¢, i.., V. Quite clearly, g, will
be directed from regions of lower ¢ toward regions of higher ¢—i.e., from regions of lower
void density changes, toward those of higher such—and thus:
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4= ad, (3.10)

where a;; is the void diffusivity tensor which is positive definite. Equations (3.9) and (3.10)
combine to give the following evolution eqn for ¢ :

Bd+zky, = —(a;d;), (3.1
4. CONSTITUTIVE FORMULATION
We begin with eqn (4.1), i.e.,

fg) = k(e,2) 4.1

Because ¢ is not a pressure, but a diffusion potential, the theory is associative. Thus:
& =zf 4.2)
&, =0 (4.2a)

The rate form of eqn (4.1)—the Prager consistency condition—is given by eqn (4.3) :
[ 8 =kodptk.z 4.3)

At this point we use eqns (2.3a), (2.4), (4.2) and (4.3) to find the following relation for ¢:

&= 821+ ([ §— ko) (4.4)

where a period between two tensors denotes their scalar product. Upon taking the inner
product of both sides of eqn (4.4) with respect to f one finds that:

H [ =k f e+ f17ks (4.5)

where H is given in eqn (4.6)
H = (k2w + ] (4.6)
and || is the Euclidean norm. Thus, substituting for /- in eqn (4.4) the constitutive

relation (4.7) is found between the deviatoric stress rate on one hand and the deviatoric
strain rate and ¢ on the other:

§ = 2ug— QuiH) f&if ¢+ (f/ Dk, @)

where ® is the outer product between two tensors. In a similar manner substitution for f- §
is eqn (4.3) gives the following equation for 2

Hz = [+ (k2009 (48)

The set of constitutive field equations

At this juncture the set of constitutive equations for the rates of (a) stress ¢ and (b)
potential ¢ are found by use of eqns (2.3b) and (4.7) for the former and eqns (3.11) and
(4.8) for the latter. These are the following:
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¢=C7 i+ H kafd 4.9
. k L ko .
¢ {_ B+ 2)117{_} - (aii(b./)u + Hﬁjgll (4 10)

where C?, the elastoplastic tangent modulus, is now positive definite and symmetric, Valanis
(1996), and is given in eqn (4.11) :

o= 40,00+ 040, + udyd 5 — Qu/H) fifu 4.11)

We note that A and p are the elastic Lamé constants. These equations are supplemented by
the equilibrium equation, given in rate form in eqn (4.12):

G,+f=0 (4.12)
where f; is the body force field.

Boundary conditions

Case (i). Stress boundary conditions. Permeable boundary. In the case T, are prescribed
on S, and in view of eqn (3.2), ¢ is equal to — T'n,. Since the boundary is permeable no
further boundary condition is called for.

Case (ii). General boundary conditions. In this case traction rates 7; are prescribed on
Sr and displacement rates U are prescribed on S, such that S,US, = S. Similarly, if Sy is
a permeable boundary while S, is impermeable, such that SoUS, = S, then ¢ is prescribed
on Sy, in accordance with eqn (3.2), while on Sy :

gn; = ai’.q.ﬁjni =1 (413)
We note that case (i) is a special case of the general case (i1).

The boundary value problem

The boundary value problem is now defined as follows. Given the general boundary
conditions (i) on S and eqns (4.9), (4.10) and (4.12) in D to determine the velocity field #;
and the potential field rate ¢ in D.

5. WELL-POSEDNESS

The boundary value problem is well-posed if a solution exists and is unique and stable.

Uniqueness and “‘stability” of the solution of the boundary value problem

Here we examine the type of “stability” the criterion for which is that: no solutions
exist when the boundary conditions and the time rate of the body force field f; are null. In
linear problems this is also a criterion for uniqueness.

To demonstrate this, let {#, ¢}, be a solution set for the prescribed general boundary
conditions, as in case (ii), and let {i, ¢}, be a solution when the boundary conditions are
null. Because the boundary value problem is linear, then {#, d)} 1+ {#t;, ¢} would also be a
solution. There would then exist a bifurcation and (solution), would not be “‘stable’ since
it could spontaneously “‘jump” to (solution), + (solution),.

It now remains to show that the solution to the boundary value problem, as defined
by eqns (4.9) and (4.10) and (4.12) and in the light of the prescribed boundary conditions
of case (ii), is “*stable”. To this end, let I" denote the following integral :
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r= j T,u,-dS+J q,-nid)dS—i—j fu,dV (5.1)
S S V

Upon analysis it then follows that I, in the light of eqn (4.9), (4.11) and (4.12), and upon
use of the Green—Gauss theorem, is also given by eqn (5.2):

r =f Ch, iy, dV + J Ad*dV+ J a,d.p,dvV (5.2)
vV Vv v

where 4 =(kj/2uH)— B. We shall examine two different cases, (a) when 4 > 0 and (b)
when 4 < 0.

Case (a): 4 = 0. We make note of the fact that C{}, and a;, are positive definite. Thus,
in view of eqn (5.2) I is always positive for non null solutions. However when the boundary
conditions are null and £, = 0, then " must be zero as a result of eqn (5.1). Since I' cannot
be positive and zero simultaneously, no non-null solutions can exist when the boundary
conditions are null and £, = 0. Thus, if a solution exists it is “’stable” in the sense that there
is no bifurcation. This analysis, however, says nothing about existence.

To show uniqueness we note that if two solutions {1, ¢}, and {u, ¢}, exist then their
difference would also be a solution but with nuil boundary and zero body-force field rate
conditions. We have shown that because I' > 0, this is not possible and thus the solution is
unique.

Case (b): 4 < 0. In this case I is not always positive. If I' = 0, then nothing can be
said about “stability” or uniqueness. If I' < 0, then again, since I" cannot be simultaneously
zero and negative, no solution can exist when the boundary condition are null. Thus, if a
solution exists then it is “stable” in the above sense, and unique. In the following section,
however, where we solve the problem of shearing of @ material layer, we find that if 4 <0
there are conditions whereby a solution does not exist. Under conditions where it does exist
then it is periodic. Furthermore there are characteristic layer depths, for which the solution
is not “‘stable” in the different sense that a small change in the boundary conditions produces
a large change in the magnitude of the solution. This type of instability is tantamount to
self-generation of energy.

6. SIMPLE SHEARING OF AN INFINITE LAYER

We complete the paper with the analysis of the following problem. A material layer of
finite depth » and infinite length and width, is rigidly affixed to a rigid impermeable
foundation at y = 0 (where y is the coordinate normal to the plane of the layer) and is
subject to a uniform shear s (s > 0) and a uniform pressure p (p = 0) at y = h. We mention
that this problem is geometrically equivalent to the pure torsion of a long thin tube.

The material is a Mises solid with isotropic hardening, in which case the configuration
of the yield surface is given by eqn (6.1):

Is| = k(9. z2) (6.1)
the rate form of which is given by eqn (6.1a):
§signum(s) = k,p+k.z (6.1a)
and since s > 0:

§=kyp+k.z (6.2)
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Also:
¢’ = z0|s|/0s = zsignum(s) = 2 (6.3)
In this particular one-dimensional problem eqn (3.9) becomes:
B —kyz+0q/3y =0 (6.4)
while, in view of eqn (3.10):
q=adp/dy (6.5)
where a (>0) is the diffusion coefficient. We now use eqns (6.2) and (6.5) and substitute
for z and ¢ in eqn (6.4) to find the following second-order ordinary differential equation
for ¢:
ad§Jay’ = Ap— (kylk.)$ (6.6)
where A = kj/k.— B. The boundary conditions are: iploy=0aty=0;p=paty=h.

Case of A > 0. We introduce the parameter b where: b =(A/a)'”. In the light of the
boundary conditions the solution to eqn (6.6) is then found to be:

cosh by> _cosh by ©67)

o
=" S<1 cosh bh | 77 cosh bh

Of particular interest is the case where p is zero. For metals it represents simple torsion
of a thin tube at constant (or zero) pressure at the loading end. In this case:

ko = § <1 cosh by> (6.8)

" coshbh

Remark. In view of eqn (6.2) plastic action will take place (for £, > 0) whenever:

5>k, (6.9)
Because the term multiplying s on the right hand side of eqn (6.9) is always less than unity
in the interval 0 < y < A, condition (6.10) is satisfied for all y. Thus, plastic action will take

place in the entire domain of the layer whenever s > 0.
Furthermore use of eqn (6.2) gives:

_cosh by

= % cosh bk (6.10)
Or, in view of eqn (6.3) :
. _cosh by
k.éf =5 oshbh (6.11)
Now let:
k(¢,2) = k(@)(1—e ) +s, (6.12)

where s, is the yield stress in shear, in light of eqn (6.1), 1 —¢* is a common form of the
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increasing y |

eP

Fig. 1. Shear stress versus plastic shear strain at increasing distance from bottom rigid impermeable
surface.

hardening function and k(¢) depicts the dependence of the yield surface on ¢ (not p as in
standard plasticity). Then:

b = 2dx/d¢(anx) "' cosh(w/2)z (6.13)
k. = a(d) e (6.14)

Equation (6.13) may be integrated to give s as a function of z—and ¢” since in view of eqn
(6.3) ¢ = z. Thus:

st = ﬂfcoshbhd 6.15
5=, ) oK e cosh by z 15)

A schematic representation of the stress—plastic strain curves at various depths is given
in Fig. 1. Evidently the material is softest at the top of the layer and hardens monotonically
as the depth increases, becoming hardest at the bottom. The strain rate distribution is not
uniform—as depicted by the local theory—and the plastic strain rate decreases with depth
at fixed s.

Pressure sensitivity of the plastic strain rate
Also of interest is the variation in plastic shear strain, in a case encountered physically,
where the pressure varies at constant applied stress. Then, it follows from eqn (6.7) :

_cosh by

(f)ngshﬁ (616)

Thus, ¢ is a maximum at y = A, the surface of applied pressure, and smallest at y = 0. We
now recall eqns (6.2) and (6.16) to find :

, . .coshbhy
2= —lkyfkolp coshbh

(6.17)

If p is positive then' 7 is negative and plastic deformation cannot take place. Thus & = 0.
On the other hand if p is negative, then 2 is positive and thus:
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cosh by
cosh bk

& = —(kyfk)d = (ky/k) |l (6.18)

In this case the plastic strain increases with decrease of pressure, as would be expected
physically, but at a rate which is a maximum at the upper boundary because there ¢isa
maximum.

This result is in broad agreement with observations of unstable motion of top layers
of soils under pressure.

7. SOFTENING AND PATTERNED DEFORMATION

Case of A <0

In this last section we shall show that softening alone i.e., in the absence of variations
in pressure, in fact under conditions of p = 0, gives rise to solutions that are subject to
instability and (ii) leads to geometrically patterned deformation. To show this we set k. < 0,
in which event A < 0 and choose & to be the softening function depicted in eqn (7.1) :

k(¢,z) =k, +BP)e " +c, (7.1)
where k,, B, « and ¢, are all positive material constants. Now,
ky = fo* (72)
Furthermore at p =0,
k.= —kae ™ (7.3)
Thus setting B = 0, for ease of illustration,
b* = —ble ™ (7.4)
where b2 = f%/ank,. Evidently 57 is negative and b is imaginary and equal to /b* where b*
is equal to b,e~** and is always real.
Substituting this value of 4 in solution for ¢’ given by eqn (6.12) we find a new periodic

form of the solution given in eqn (7.5) :

cos b*y
AL e
cos b*h

(7.5)

Discussion

We remark on three significant differences between the new “‘softening” solution and
its previous “hardening” counterpart i.e., eqn (6.12). (i) The sign of & is opposite to that
of § as it must be, given the fact that 5 is constant in the layer; (ii) ¢’ is of periodic character
and thus gives rise to patterned deformation in the form of periodic bands ; (iii) a solution
does not exist when b*h = n/2, at which point cos *h vanishes and ¢” becomes infinite. The
solution becomes ‘“‘unstable” when »*h = n/2 —6 where ¢ is a vanishingly small number.
Then:

b* 7
k.| = sios-é i (1.6)

in which event ¢’ becomes large at very small values of §. Of interest is the fact that a
solution exists, it is periodic and unique, except for values of § = 0.
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8. EXISTENCE AND UNIQUENESS OF SOLUTION TO THE BOUNDARY VALUE
PROBLEM

In Section 5 we showed stability and uniqueness of the solution to the boundary value
problem in the event that a solution exists. In this section we discuss the question of
existence and provide appropriate proof. We limit the discussion to variational solutions.

We recall the pertinent equations in D, i.e.,

65 = Cilutis+ Fydb (8.1)
A =(ayd ).+ Fyey (8.2)
G4+ =0 (8.3)

where F;,— H ~'k4f;» and the pertinent boundary conditions on S, i.e.,

T,» = G;h;; (f) = T,n,- (8.4a,b)

yrtis

The ““solution” to the boundary value problem then consists in finding functions & and the
¢, continuous and differentiable in D that satisfy eqns (8.1-8.3) in D and the boundary
conditions (8.4a,b) on S.

The discussion will be limited to variational solutions. See Courant and Hilbert (1962).
We multiply both sides of eqn (8.3) by du,, where ¢ is the variation operator and integrate
over D. Upon use of eqn (8.1) and the Green-Gauss theorem we find the following
variational form of these equations:

J Co o, Oty AV + f GF,6u,,dV = J T.6u,dS (8.5)
vV 14 R

S

We now multiply both sides of eqn (8.2) by d¢. integrate over D and use the Green—-Gauss
theorem to find the following variational form of eqn (8.2):

‘[AééédV+J¢%¢ﬁ¢JdV—jﬂmw&ﬁ=—{a®¢mm5¢ 8.6)

Without going into excessive discussion, we note that eqns (8.5) and (8.6) would provide a
variational solution to the problem if 8¢/én were known on S. However this is not the case
here since it is ¢ that is known on §.

To deal with this specific case we set:

b= p*+ (8.7)
where ¢* is any (known) function that satisfies the boundary conditions, i.e.,
¢*=¢ onS (8.8)
and ¢’ is such that:
¢ =0 onS (8.9)
we note that d¢ = d¢’, since ¢* is fixed and that:
0¢’=0 onS (8.10)

Upon substitution of eqn (8.7) into eqn (8.5) and (8.6) we arrive at the following variational
formulation in terms of ¢’ :
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j Chiiy 0, AV + j &' Fydu,; = J T.6u,— S F* (8.11)
V |4 S

J AP'S¢'dV + f a, ', 6¢, AV —[Fu, 6¢ = —6A4* (8.12)
| 4 Vv
with the following definitions:

P* = f Fyd*a,;dV (8.13a)
A*:J Ad)*d)’dV%—J a,; %, (8.13b)

Note should be made of the fact that the surface integral on the right hand side of eqn (8.6)
is zero since ¢’ vanishes on S.

At this point we use the usual methods of variational calculus to obtain the solution
to eqns (8.11) and (8.12). We thus let ¢” be a set of continuous and differentiable functions
that vanish on S and span ¢’ in the sense that:

¢ =Y ¢ D, +5, (8.14)
1
such that the “‘error” §,, - 0 and m — co. In the same vein let:
w =Y uU,—o6% (8.15)
1

where % — 0 as n - o0, and U, are generalised “‘coordinates’ without directionality. Then
to within the indicated error and for any finite n:

S’ =X¢'d®,; u, = udU, (8.16a,b)

The solution of eqns (8.11) and (8.12) is then reduced to determining the coefficients U,
and ©,.

Upon substitution of eqn (8.16a,b) into eqns (8.11) and (8.12) and use of the standard
variational arguments one obtains the following set of simultaneous linear algebraic equa-
tions in the unknowns ¢” and U, :

C*U+F¢p, =T —F* (8.17)
—FU 4+ A%, = — 4% (8.18)
with the following definitions :
T = f Tu dS (8.19)
A

P = J Fudu,dV (8.20)
14
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Ax = ﬁ (AQ*¢ +a, X%} dV (8.21)
cr = L Cadl uy, dV (8.22)

Fr = L O F (8.23)
A“=£;A¢w*wm¢¢ndV (8.24)

A perusal of eqns (8.17) and (8.18) shows that a solution to the set these simultaneous
linear algebraic equations exists and is unique if the matrices C* and 4™ are non-singular.
Now (™ is symmetric and positive definite because C7, is such. The diffusion matrix a;; is
symmetric and positive definite. Thus if 4 is non-negative then 4™ is positive definite as
well. In this event C” and 4™ are both non-singular and thus a variational solution to the
boundary value problem exists and is unique.

Remark. The sign of 4. We recall that :

A =(K32uH) > B (8.25)

If during an experiment a material does not exhibit banding or patterned deformation (not
all deformation fields exhibit banding), then we infer that A is positive, i.e., (k}/2uH)B,
and the boundary value problem is well posed. If 4 is negative 4™ may also be negative (or
zero). In the case of simple shearing patterned deformation results when 4 < 0. The general
problem is more complex and will be addressed in future work.

9. CONSTITUTIVE FORMULATION IN THE PRESENCE OF ISOTROPIC AND
KINEMATIC HARDENING

Kinematic hardening is introduced through the back stress tensor x. Equation (2.1)
now becomes :

Ms—@) = k(e,2) .1
As before:
de” = fdz 9.2)
and therefore :
|de| = ||/ dz 9.3)

The Prager consistency condition, in the light of eqn (9.1) now becomes :
[(ds—dy) = dk (9.4)

It was shown previously by Valanis (1980), in connection with his work on endocrinic
plasticity, that in the presence of plastic incompressibility, g is a linear functional of the

~

plastic strain history, with respect to a memory kernel p,(z2), i.e.,
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g = J p1(z—2z'de” 9.5)
and thus:

dy = p,(0)de’ +hdz (9.6)
where:

h= J pi(z—z)de ©.7)

where p| = dp,/dz=.
Use of eqn (9.6) and upon substitution for da in eqn (9.4) one obtains the following
result :

[8=(H+k)z+k,¢ (9.8)

where :

Hy=p,(0)+ (/" D/ 9.9)

Comparison of eqn (9.8) with eqn (4.3) shows that the only change, relative to isotropic
hardening, is the augmentation of the isotropic hardening coefficient k. by the kinematic
hardening coefficient H,, otherwise the form of the equations remains precisely the same.
Thus the hardening function H, previously shown in eqn (4.6), is now given by eqn (9.10) :

H = (H,+k)2u+ /7 (9.10)

We remark that H, is non-negative but leave the proof to the reader. Thus, H is positive if
k.>0.

Furthermore, the constitutive field eqns (4.9) and (4.10) remain precisely the same
except that H is now given by eqn (9.10). The constitutive formulation in the presence of
isotropic as well as kinematic hardening is now complete.
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